4.健全 | 4. Robustness
4鲁棒性
信使例子中有几件事情是错误的A Larger Example
。例如,如果用户登录的节点在没有注销的情况下关闭,则用户将保留在服务器中User_List
,但客户端消失。这使得用户无法再次登录,因为服务器认为用户已经登录。
或者,如果服务器在发送消息的过程中发生故障,会将发送方客户端永远挂在该await_result
函数中会发生什么?
4.1超时
在改进信使程序之前,让我们看看一些通用原则,以乒乓程序为例。回想一下,当“ping”完成时,它通过将原子finished
作为消息发送给“pong
”来告诉“pong
”,这样“pong
”也可以完成。让“pong
”完成的另一种方法是,如果在某个时间内没有收到来自ping的消息,则使“pong
”退出。这可以通过添加超时
来完成pong
,如以下示例所示:
-module(tut19).
-export([start_ping/1, start_pong/0, ping/2, pong/0]).
ping(0, Pong_Node) ->
io:format("ping finished~n", []
ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong_Node).
pong() ->
receive
{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()
after 5000 ->
io:format("Pong timed out~n", [])
end.
start_pong() ->
register(pong, spawn(tut19, pong, [])).
start_ping(Pong_Node) ->
spawn(tut19, ping, [3, Pong_Node]).
在编译完成并将文件tut19.beam
复制到必要的目录后,在(pong @ kosken)上显示以下内容:
(pong@kosken)1> tut19:start_pong().
true
Pong received ping
Pong received ping
Pong received ping
Pong timed out
以下是在(ping @ gollum)上看到的:
(ping@gollum)1> tut19:start_ping(pong@kosken).
<0.36.0>
Ping received pong
Ping received pong
Ping received pong
ping finished
超时设置为:
pong() ->
receive
{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()
after 5000 ->
io:format("Pong timed out~n", [])
end.
超时(after 5000
)在receive
输入时开始。如果{ping,Ping_PID}
收到超时,超时将被取消。如果{ping,Ping_PID}
未收到,超时后的操作在5000毫秒后完成。after
必须在最后receive
,即在之前的所有其他消息接收规范中receive
。也可以调用一个为超时返回一个整数的函数:
after pong_timeout() ->
一般来说,比使用超时监控分布式Erlang系统的部分更好。例如,如果您希望在特定时间内发送来自某个外部系统的消息,则超时通常适用于监控外部事件。例如,超时可以用来将用户从信使系统中注销,如果他们还没有访问它,例如十分钟。
4.2错误处理
在详细介绍Erlang系统中的监督和错误处理之前,让我们看看Erlang进程是如何终止的,或者以Erlang术语退出
。
执行exit(normal)
或简单耗尽事情的过程具有正常
退出。
遇到运行时错误(例如,除以零,错误匹配,试图调用不存在的函数等等)的进程退出并出现错误,即出现异常
。其执行的方法exit(Reason)
,其中Reason
是除了原子的任何Erlang项normal
,还具有异常
退出。
Erlang进程可以建立到其他Erlang进程的链接。如果一个进程调用link(Other_Pid)
它,它会在它自己和被调用的进程之间建立一个双向链接Other_Pid
。当一个进程终止时,它会向它所链接的所有进程发送一个叫做信号的
东西。
该信号携带有关它被发送的PID和退出原因的信息。
接收正常退出的进程的默认行为是忽略该信号。
上面两种情况下(即异常退出)的默认行为是:
- 绕过所有消息到接收进程。
- 切断接收过程。
- 将相同的错误信号传播到终止进程的链接。
通过这种方式,您可以使用链接将事务中的所有进程连接在一起。如果其中一个进程异常退出,则会终止事务中的所有进程。因为它通常是想创建一个流程并同时链接到它,所以有一个特殊的BIF,spawn_link
它的功能与此相同spawn
,但也创建了一个与生成的流程的链接。
下面是一个使用链接终止“pong”的乒乓球示例:
-module(tut20).
-export([start/1, ping/2, pong/0]).
ping(N, Pong_Pid) ->
link(Pong_Pid),
ping1(N, Pong_Pid).
ping1(0, _) ->
exit(ping
ping1(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping1(N - 1, Pong_Pid).
pong() ->
receive
{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()
end.
start(Ping_Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping_Node, tut20, ping, [3, PongPID]).
(s1@bill)3> tut20:start(s2@kosken).
Pong received ping
<3820.41.0>
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
这是对乒乓程序的轻微修改,其中两个进程都来自相同的start/1
函数,并且“ping”进程可以在单独的节点上生成。注意使用link
BIF。exit(ping)
当它结束时“Ping”呼叫,并且这导致退出信号被发送到“pong”,其也终止。
可以修改进程的默认行为,以便在接收到异常退出信号时不会被终止。相反,所有信号都将转换为格式的正常消息,{'EXIT',FromPID,Reason}
并添加到接收过程的消息队列末尾。此行为由以下设置:
process_flag(trap_exit, true)
还有其他几个进程标志,请参阅erlang(3)
。以这种方式更改过程的默认行为通常不是在标准用户程序中完成的,而是留给OTP中的监督程序。然而,乒乓球节目被修改以说明退出诱捕。
-module(tut21).
-export([start/1, ping/2, pong/0]).
ping(N, Pong_Pid) ->
link(Pong_Pid),
ping1(N, Pong_Pid).
ping1(0, _) ->
exit(ping
ping1(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping1(N - 1, Pong_Pid).
pong() ->
process_flag(trap_exit, true),
pong1().
pong1() ->
receive
{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong1(
{'EXIT', From, Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.
start(Ping_Node) ->
PongPID = spawn(tut21, pong, []),
spawn(Ping_Node, tut21, ping, [3, PongPID]).
(s1@bill)1> tut21:start(s2@gollum).
<3820.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
pong exiting, got {'EXIT',<3820.39.0>,ping}
4.3增加鲁棒性的更大示例
让我们回到messenger程序并添加更改以使其更稳健:
%%% Message passing utility.
%%% User interface:
%%% login(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% logoff()
%%% Logs off anybody at that node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client"
%%%
%%% Protocol between the client processes and the server
%%% ----------------------------------------------------
%%%
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% When the client terminates for some reason
%%% To server: {'EXIT', ClientPid, Reason}
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% ----------------------------------------------
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs
-module(messenger).
-export([start_server/0, server/0,
logon/1, logoff/0, message/2, client/2]).
%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->
messenger@super.
%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server() ->
process_flag(trap_exit, true),
server([]).
server(User_List) ->
receive
{From, logon, Name} ->
New_User_List = server_logon(From, Name, User_List),
server(New_User_List
{'EXIT', From, _} ->
New_User_List = server_logoff(From, User_List),
server(New_User_List
{From, message_to, To, Message} ->
server_transfer(From, To, Message, User_List),
io:format("list is now: ~p~n", [User_List]),
server(User_List)
end.
%%% Start the server
start_server() ->
register(messenger, spawn(messenger, server, [])).
%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->
%% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of
true ->
From ! {messenger, stop, user_exists_at_other_node}, %reject logon
User_List;
false ->
From ! {messenger, logged_on},
link(From),
[{From, Name} | User_List] %add user to the list
end.
%%% Server deletes a user from the user list
server_logoff(From, User_List) ->
lists:keydelete(From, 1, User_List).
%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User_List) of
false ->
From ! {messenger, stop, you_are_not_logged_on};
{value, {_, Name}} ->
server_transfer(From, Name, To, Message, User_List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User_List) of
false ->
From ! {messenger, receiver_not_found};
{value, {ToPid, To}} ->
ToPid ! {message_from, Name, Message},
From ! {messenger, sent}
end.
%%% User Commands
logon(Name) ->
case whereis(mess_client) of
undefined ->
register(mess_client,
spawn(messenger, client, [server_node(), Name])
_ -> already_logged_on
end.
logoff() ->
mess_client ! logoff.
message(ToName, Message) ->
case whereis(mess_client) of % Test if the client is running
undefined ->
not_logged_on;
_ -> mess_client ! {message_to, ToName, Message},
ok
end.
%%% The client process which runs on each user node
client(Server_Node, Name) ->
{messenger, Server_Node} ! {self(), logon, Name},
await_result(),
client(Server_Node).
client(Server_Node) ->
receive
logoff ->
exit(normal
{message_to, ToName, Message} ->
{messenger, Server_Node} ! {self(), message_to, ToName, Message},
await_result(
{message_from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server_Node).
%%% wait for a response from the server
await_result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Why]),
exit(normal
{messenger, What} -> % Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.
增加了下列更改:
信使服务器陷阱退出。如果它收到退出信号,{'EXIT',From,Reason}
这意味着客户端进程已终止或无法访问,原因如下:
- 用户已注销(“注销”消息被删除)。
- 到客户端的网络连接中断。
- 客户端进程所在的节点已经关闭。
- 客户端进程进行了一些非法操作。
如果收到如上所述的退出信号,则使用该功能{From,Name}
从服务器删除元组。如果服务器运行的节点出现故障,则会向所有客户端进程发送退出信号(由系统自动生成):导致所有客户端进程终止。User_Listserver_logoff{'EXIT',MessengerPID,noconnection}
另外,该await_result
功能中引入了五秒的超时。也就是说,如果服务器在五秒内(5000毫秒)内没有回复,则客户端终止。这仅在客户端和服务器链接之前的登录顺序中需要。
一个有趣的例子是,如果客户端在服务器链接到它之前终止。由于链接到一个不存在的进程会导致一个退出信号{'EXIT',From,noproc}
被自动生成,因此这被处理。这就好像该过程在链接操作之后立即终止。