Ruby 2.4

Math

Math 模块

当需要mathn时,Math模块更改如下:

标准数学模块行为:

Math.sqrt(4/9) # => 0.0 Math.sqrt(4.0/9.0) # => 0.666666666666667 Math.sqrt(- 4/9) # => Errno::EDOM: Numerical argument out of domain - sqrt

在需要'mathn'之后,这个更改为:

require 'mathn' Math.sqrt(4/9) # => 2/3 Math.sqrt(4.0/9.0) # => 0.666666666666667 Math.sqrt(- 4/9) # => Complex(0, 2/3)

数学模块包含基本三角函数和超越函数的模块函数。请参阅Float类以获取定义Ruby浮点精度的常量列表。

域和codomains仅适用于真实(不复杂)的数字。

常量

E

数学常数E(e)定义为浮点数。

PI

数学常量PI定义为浮点数。

公共类方法

acos(x) → Float Show source

计算x的反余弦。 返回0..PI。

Domain: -1, 1

Codomain: 0, PI

Math.acos(0) == Math::PI/2 #=> true

static VALUE math_acos(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x /* check for domain error */ if (d < -1.0 || 1.0 < d) domain_error("acos" return DBL2NUM(acos(d) }

acosh(x) → Float Show source

计算x的反双曲余弦。

Domain: [1, INFINITY)

Codomain: [0, INFINITY)

Math.acosh(1) #=> 0.0

static VALUE math_acosh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x /* check for domain error */ if (d < 1.0) domain_error("acosh" return DBL2NUM(acosh(d) }

asin(x) → Float Show source

计算x的反正弦。 返回-PI / 2..PI / 2。

Domain: -1, -1

Codomain: -PI/2, PI/2

Math.asin(1) == Math::PI/2 #=> true

static VALUE math_asin(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x /* check for domain error */ if (d < -1.0 || 1.0 < d) domain_error("asin" return DBL2NUM(asin(d) }

asinh(x) → Float Show source

计算x的反双曲正弦。

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.asinh(1) #=> 0.881373587019543

static VALUE math_asinh(VALUE unused_obj, VALUE x) { return DBL2NUM(asinh(Get_Double(x)) }

atan(x) → Float Show source

计算x的反正切。 返回-PI / 2..PI / 2。

Domain: (-INFINITY, INFINITY)

Codomain: (-PI/2, PI/2)

Math.atan(0) #=> 0.0

static VALUE math_atan(VALUE unused_obj, VALUE x) { return DBL2NUM(atan(Get_Double(x)) }

atan2(y, x) → Float Show source

计算给定y和x的反正切。 返回范围-PI..PI中的Float。 返回值是笛卡尔平面的正x轴与其坐标(x,y)给出的点之间的角度弧度。

Domain: (-INFINITY, INFINITY)

Codomain: -PI, PI

Math.atan2(-0.0, -1.0) #=> -3.141592653589793 Math.atan2(-1.0, -1.0) #=> -2.356194490192345 Math.atan2(-1.0, 0.0) #=> -1.5707963267948966 Math.atan2(-1.0, 1.0) #=> -0.7853981633974483 Math.atan2(-0.0, 1.0) #=> -0.0 Math.atan2(0.0, 1.0) #=> 0.0 Math.atan2(1.0, 1.0) #=> 0.7853981633974483 Math.atan2(1.0, 0.0) #=> 1.5707963267948966 Math.atan2(1.0, -1.0) #=> 2.356194490192345 Math.atan2(0.0, -1.0) #=> 3.141592653589793 Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483 Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345 Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483 Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345

static VALUE math_atan2(VALUE unused_obj, VALUE y, VALUE x) { double dx, dy; dx = Get_Double(x dy = Get_Double(y if (dx == 0.0 && dy == 0.0) { if (!signbit(dx)) return DBL2NUM(dy if (!signbit(dy)) return DBL2NUM(M_PI return DBL2NUM(-M_PI } #ifndef ATAN2_INF_C99 if (isinf(dx) && isinf(dy)) { /* optimization for FLONUM */ if (dx < 0.0) { const double dz = (3.0 * M_PI / 4.0 return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz } else { const double dz = (M_PI / 4.0 return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz } } #endif return DBL2NUM(atan2(dy, dx) }

atanh(x) → Float Show source

计算x的反双曲正切。

Domain: (-1, 1)

Codomain: (-INFINITY, INFINITY)

Math.atanh(1) #=> Infinity

static VALUE math_atanh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x /* check for domain error */ if (d < -1.0 || +1.0 < d) domain_error("atanh" /* check for pole error */ if (d == -1.0) return DBL2NUM(-INFINITY if (d == +1.0) return DBL2NUM(+INFINITY return DBL2NUM(atanh(d) }

cbrt(x) → Float Show source

返回x的立方体根。

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

-9.upto(9) {|x| p [x, Math.cbrt(x), Math.cbrt(x)**3] } #=> [-9, -2.0800838230519, -9.0] # [-8, -2.0, -8.0] # [-7, -1.91293118277239, -7.0] # [-6, -1.81712059283214, -6.0] # [-5, -1.7099759466767, -5.0] # [-4, -1.5874010519682, -4.0] # [-3, -1.44224957030741, -3.0] # [-2, -1.25992104989487, -2.0] # [-1, -1.0, -1.0] # [0, 0.0, 0.0] # [1, 1.0, 1.0] # [2, 1.25992104989487, 2.0] # [3, 1.44224957030741, 3.0] # [4, 1.5874010519682, 4.0] # [5, 1.7099759466767, 5.0] # [6, 1.81712059283214, 6.0] # [7, 1.91293118277239, 7.0] # [8, 2.0, 8.0] # [9, 2.0800838230519, 9.0]

static VALUE math_cbrt(VALUE unused_obj, VALUE x) { return DBL2NUM(cbrt(Get_Double(x)) }

cos(x) → Float Show source

计算x的余弦(以弧度表示)。 返回-1.0..1.0范围内的Float值。

Domain: (-INFINITY, INFINITY)

Codomain: -1, 1

Math.cos(Math::PI) #=> -1.0

static VALUE math_cos(VALUE unused_obj, VALUE x) { return DBL2NUM(cos(Get_Double(x)) }

cosh(x) → Float Show source

计算x的双曲余弦(以弧度表示)。

Domain: (-INFINITY, INFINITY)

Codomain: [1, INFINITY)

Math.cosh(0) #=> 1.0

static VALUE math_cosh(VALUE unused_obj, VALUE x) { return DBL2NUM(cosh(Get_Double(x)) }

erf(x) → Float Show source

计算x的误差函数。

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.erf(0) #=> 0.0

static VALUE math_erf(VALUE unused_obj, VALUE x) { return DBL2NUM(erf(Get_Double(x)) }

erfc(x) → Float Show source

计算x的互补误差函数。

Domain: (-INFINITY, INFINITY)

Codomain: (0, 2)

Math.erfc(0) #=> 1.0

static VALUE math_erfc(VALUE unused_obj, VALUE x) { return DBL2NUM(erfc(Get_Double(x)) }

exp(x) → Float Show source

返回e ** x。

Domain: (-INFINITY, INFINITY)

Codomain: (0, INFINITY)

Math.exp(0) #=> 1.0 Math.exp(1) #=> 2.718281828459045 Math.exp(1.5) #=> 4.4816890703380645

static VALUE math_exp(VALUE unused_obj, VALUE x) { return DBL2NUM(exp(Get_Double(x)) }

frexp(x) → fraction, exponent()

返回包含归一化分数(Float)和指数(Integer)的两元素数组x

fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] fraction * 2**exponent #=> 1234.0

static VALUE math_frexp(VALUE unused_obj, VALUE x) { double d; int exp; d = frexp(Get_Double(x), &exp return rb_assoc_new(DBL2NUM(d), INT2NUM(exp) }

gamma(x) → Float Show source

计算x的伽玛函数。

请注意,对于整数n> 0,gamma(n)与fact(n-1)相同。但是gamma(n)返回float并且可以是近似值。

def fact(n) (1..n).inject(1) {|r,i| r*i } end 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] } #=> [1, 1.0, 1] # [2, 1.0, 1] # [3, 2.0, 2] # [4, 6.0, 6] # [5, 24.0, 24] # [6, 120.0, 120] # [7, 720.0, 720] # [8, 5040.0, 5040] # [9, 40320.0, 40320] # [10, 362880.0, 362880] # [11, 3628800.0, 3628800] # [12, 39916800.0, 39916800] # [13, 479001600.0, 479001600] # [14, 6227020800.0, 6227020800] # [15, 87178291200.0, 87178291200] # [16, 1307674368000.0, 1307674368000] # [17, 20922789888000.0, 20922789888000] # [18, 355687428096000.0, 355687428096000] # [19, 6.402373705728e+15, 6402373705728000] # [20, 1.21645100408832e+17, 121645100408832000] # [21, 2.43290200817664e+18, 2432902008176640000] # [22, 5.109094217170944e+19, 51090942171709440000] # [23, 1.1240007277776077e+21, 1124000727777607680000] # [24, 2.5852016738885062e+22, 25852016738884976640000] # [25, 6.204484017332391e+23, 620448401733239439360000] # [26, 1.5511210043330954e+25, 15511210043330985984000000]

static VALUE math_gamma(VALUE unused_obj, VALUE x) { static const double fact_table[] = { /* fact(0) */ 1.0, /* fact(1) */ 1.0, /* fact(2) */ 2.0, /* fact(3) */ 6.0, /* fact(4) */ 24.0, /* fact(5) */ 120.0, /* fact(6) */ 720.0, /* fact(7) */ 5040.0, /* fact(8) */ 40320.0, /* fact(9) */ 362880.0, /* fact(10) */ 3628800.0, /* fact(11) */ 39916800.0, /* fact(12) */ 479001600.0, /* fact(13) */ 6227020800.0, /* fact(14) */ 87178291200.0, /* fact(15) */ 1307674368000.0, /* fact(16) */ 20922789888000.0, /* fact(17) */ 355687428096000.0, /* fact(18) */ 6402373705728000.0, /* fact(19) */ 121645100408832000.0, /* fact(20) */ 2432902008176640000.0, /* fact(21) */ 51090942171709440000.0, /* fact(22) */ 1124000727777607680000.0, /* fact(23)=25852016738884976640000 needs 56bit mantissa which is * impossible to represent exactly in IEEE 754 double which have * 53bit mantissa. */ }; enum {NFACT_TABLE = numberof(fact_table)}; double d; d = Get_Double(x /* check for domain error */ if (isinf(d) && signbit(d)) domain_error("gamma" if (d == floor(d)) { if (d < 0.0) domain_error("gamma" if (1.0 <= d && d <= (double)NFACT_TABLE) { return DBL2NUM(fact_table[(int)d - 1] } } return DBL2NUM(tgamma(d) }

hypot(x, y) → Float Show source

返回sqrt(x ** 2 + y ** 2),即边x和y的直角三角形的斜边。

Math.hypot(3, 4) #=> 5.0

static VALUE math_hypot(VALUE unused_obj, VALUE x, VALUE y) { return DBL2NUM(hypot(Get_Double(x), Get_Double(y)) }

ldexp(fraction, exponent) → float Show source

返回fraction*(2 ** exponent)的值。

fraction, exponent = Math.frexp(1234) Math.ldexp(fraction, exponent) #=> 1234.0

static VALUE math_ldexp(VALUE unused_obj, VALUE x, VALUE n) { return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)) }

lgamma(x) → float, -1 or 1()

计算x的对数伽马和x的伽马符号。

:: lgamma与以下形式相同:

[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]

但这是为了避免大的x的 :: gamma溢出。

Math.lgamma(0) #=> [Infinity, 1]

static VALUE math_lgamma(VALUE unused_obj, VALUE x) { double d; int sign=1; VALUE v; d = Get_Double(x /* check for domain error */ if (isinf(d)) { if (signbit(d)) domain_error("lgamma" return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1) } v = DBL2NUM(lgamma_r(d, &sign) return rb_assoc_new(v, INT2FIX(sign) }

log(x) → Float Show source

log(x, base) → Float

返回x的对数。 如果再给出第二个参数,它将成为对数的基础。 否则它是e(对于自然对数)。

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log(0) #=> -Infinity Math.log(1) #=> 0.0 Math.log(Math::E) #=> 1.0 Math.log(Math::E**3) #=> 3.0 Math.log(12, 3) #=> 2.2618595071429146

static VALUE math_log(int argc, const VALUE *argv, VALUE unused_obj) { VALUE x, base; double d; rb_scan_args(argc, argv, "11", &x, &base d = math_log1(x if (argc == 2) { d /= math_log1(base } return DBL2NUM(d }

log10(x) → Float Show source

返回x的基数10的对数。

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log10(1) #=> 0.0 Math.log10(10) #=> 1.0 Math.log10(10**100) #=> 100.0

static VALUE math_log10(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits /* check for domain error */ if (d < 0.0) domain_error("log10" /* check for pole error */ if (d == 0.0) return DBL2NUM(-INFINITY return DBL2NUM(log10(d) + numbits * log10(2) /* log10(d * 2 ** numbits) */ }

log2(x) → Float Show source

返回x的基数2的对数。

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log2(1) #=> 0.0 Math.log2(2) #=> 1.0 Math.log2(32768) #=> 15.0 Math.log2(65536) #=> 16.0

static VALUE math_log2(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits /* check for domain error */ if (d < 0.0) domain_error("log2" /* check for pole error */ if (d == 0.0) return DBL2NUM(-INFINITY return DBL2NUM(log2(d) + numbits /* log2(d * 2 ** numbits) */ }

rsqrt(a) Show source

计算非负数的平方根。此方法由Math.sqrt进行内部使用。

# File lib/mathn.rb, line 119 def rsqrt(a) if a.kind_of?(Float) sqrt!(a) elsif a.kind_of?(Rational) rsqrt(a.numerator)/rsqrt(a.denominator) else src = a max = 2 ** 32 byte_a = [src & 0xffffffff] # ruby's bug while (src >= max) and (src >>= 32) byte_a.unshift src & 0xffffffff end answer = 0 main = 0 side = 0 for elm in byte_a main = (main << 32) + elm side <<= 16 if answer != 0 if main * 4 < side * side applo = main.div(side) else applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1 end else applo = sqrt!(main).to_i + 1 end while (x = (side + applo) * applo) > main applo -= 1 end main -= x answer = (answer << 16) + applo side += applo * 2 end if main == 0 answer else sqrt!(a) end end end

sin(x) → Float Show source

计算x的正弦值(以弧度表示)。 返回-1.0..1.0范围内的Float。

Domain: (-INFINITY, INFINITY)

Codomain: -1, 1

Math.sin(Math::PI/2) #=> 1.0

static VALUE math_sin(VALUE unused_obj, VALUE x) { return DBL2NUM(sin(Get_Double(x)) }

sinh(x) → Float Show source

计算x的双曲正弦(以弧度表示)。

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.sinh(0) #=> 0.0

static VALUE math_sinh(VALUE unused_obj, VALUE x) { return DBL2NUM(sinh(Get_Double(x)) }

sqrt(a) Show source

计算a的平方根。 如果可能的话,它使用Complex和Rational来避免舍入错误。

Math.sqrt(4/9) # => 2/3 Math.sqrt(- 4/9) # => Complex(0, 2/3) Math.sqrt(4.0/9.0) # => 0.666666666666667

# File lib/mathn.rb, line 103 def sqrt(a) if a.kind_of?(Complex) sqrt!(a) elsif a.respond_to?(:nan?) and a.nan? a elsif a >= 0 rsqrt(a) else Complex(0,rsqrt(-a)) end end

tan(x) → Float Show source

计算x的正切(以弧度表示)。

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.tan(0) #=> 0.0

static VALUE math_tan(VALUE unused_obj, VALUE x) { return DBL2NUM(tan(Get_Double(x)) }

tanh(x) → Float Show source

计算x的双曲正切(以弧度表示)。

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.tanh(0) #=> 0.0

static VALUE math_tanh(VALUE unused_obj, VALUE x) { return DBL2NUM(tanh(Get_Double(x)) }

私有实例方法

rsqrt(a) Show source

计算非负数的平方根。 此方法由Math.sqrt内部使用。

# File lib/mathn.rb, line 119 def rsqrt(a) if a.kind_of?(Float) sqrt!(a) elsif a.kind_of?(Rational) rsqrt(a.numerator)/rsqrt(a.denominator) else src = a max = 2 ** 32 byte_a = [src & 0xffffffff] # ruby's bug while (src >= max) and (src >>= 32) byte_a.unshift src & 0xffffffff end answer = 0 main = 0 side = 0 for elm in byte_a main = (main << 32) + elm side <<= 16 if answer != 0 if main * 4 < side * side applo = main.div(side) else applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1 end else applo = sqrt!(main).to_i + 1 end while (x = (side + applo) * applo) > main applo -= 1 end main -= x answer = (answer << 16) + applo side += applo * 2 end if main == 0 answer else sqrt!(a) end end end

sqrt(a) Show source

计算a的平方根。 如果可能的话,它使用Complex和Rational来避免舍入错误。

Math.sqrt(4/9) # => 2/3 Math.sqrt(- 4/9) # => Complex(0, 2/3) Math.sqrt(4.0/9.0) # => 0.666666666666667

# File lib/mathn.rb, line 103 def sqrt(a) if a.kind_of?(Complex) sqrt!(a) elsif a.respond_to?(:nan?) and a.nan? a elsif a >= 0 rsqrt(a) else Complex(0,rsqrt(-a)) end end