std::tan(std::complex)
STD::Tan%28 std::Complex%29
Defined in header | | |
---|---|---|
template< class T > complex<T> tan( const complex<T>& z | | |
计算复值的复切线z
...
参数
z | - | complex value |
---|
返回值
如果没有错误发生,则将z
会被归还。
处理错误和特殊情况时,就好像操作是由-i *
std::tanh
(i*z)
,在哪里i
是想象中的单位。
注记
切线是复平面上的一个解析函数,不存在分支割线。它是相对于实分量的周期,周期πi,在坐标%28π%281/2+n%29,0%29处,沿实线有一阶极。然而,没有一个普通的浮点表示法能够精确地表示π/2,因此没有发生极点误差的参数的值。切线的数学定义是tan z=
i%28 e-iz-eiz%29
*。
E-iz+Eiz
例
二次
#include <iostream>
#include <cmath>
#include <complex>
int main()
{
std::cout << std::fixed;
std::complex<double> z(1, 0 // behaves like real tangent along the real line
std::cout << "tan" << z << " = " << std::tan(z)
<< " ( tan(1) = " << std::tan(1) << ")\n";
std::complex<double> z2(0, 1 // behaves like tanh along the imaginary line
std::cout << "tan" << z2 << " = " << std::tan(z2)
<< " (tanh(1) = " << std::tanh(1) << ")\n";
}
二次
产出:
二次
tan(1.000000,0.000000) = (1.557408,0.000000) ( tan(1) = 1.557408)
tan(0.000000,1.000000) = (0.000000,0.761594) (tanh(1) = 0.761594)
二次
另见
sin(std::complex) | computes sine of a complex number (sin(z)) (function template) |
---|---|
cos(std::complex) | computes cosine of a complex number (cos(z)) (function template) |
atan(std::complex) (C++11) | computes arc tangent of a complex number (arctan(z)) (function template) |
tan | computes tangent (tan(x)) (function) |
tan(std::valarray) | applies the function std::tan to each element of valarray (function template) |
c ctan文件
© cppreference.com
在CreativeCommonsAttribution下授权-ShareAlike未移植许可v3.0。